TABLE OF CONTENTS

SECTION 1	465 SPECIFICATIONS	Page
	Introduction	1-1
	Vertical Deflection System	1-1
	Triggering	1-1
	Horizontal Deflection System	1-2
	X-Y Operation	1-3
	Calibrator	1-3
	Z Axis Input	1.3
	Signal Outputs	1-3
	Power Source	1-3
	Cathode-Ray Tube	1-3
	Supplemental Information	1-3
	General	1-3
	Vertical Deflection System	1-3
	Triggering	1-3 1-4
	Horizontal Deflection System	1-4
	Calibrator	1-4
	External Z Axis Input	1-4
	Output Signals	
	Cathode-Ray Tube	1-4
	Cathode-nay Tube	1-4
SECTION 2	OPERATING INFORMATION	
	Introduction	2-1
	Instrument Repackaging	2-1
	Operating Voltage	2-1
	Controls And Connectors	
	General	2-2
	Cathode-Ray Tube (CRT) and Display	2-2
	Vertical Deflection System	2-2
	A and B Triggering	2-4
	A and B Sweep	2-5
	Calibrator and Power	2-6
	Rear Panel	2-6
	Obtaining Basic Displays	- 0
	Introduction	2-6
	Normal Sweep Display	2-6
	Magnified Sweep Display	2-7
	Delayed Sweep Display	2-7
	Mixed Sweep Display	2-7
	X-Y Display	2-7
		2-1
SECTION 3	CIRCUIT DESCRIPTION	
	Introduction	3-1
	Digital Logic	3-1
	Block Diagram	
	General	3-1
	Channel 1 Preamp	
	General	3-3
	Input Coupling	3-3
	Input Attenuator	3-4
	Scale-Factor Switching Circuit	3-4
	Source Follower Stage	3-4
	First Cascode Amplifier Stage	3-4
	Second Cascode Amplifier Stage	3-4
	Third Cascode Amplifier Stage	3-5
	Channel 2 Preamp	
	General	3-5
	Second Cascode Amplifier	3-5
	Third Casada Amplifiar	2.6

	TABLE OF CONTENTS (COIL)	
SECTION 3	CIRCUIT DESCRIPTION (cont)	Page
	Vertical Switching Circuit	2.0
	General	3-6
	Diode Gates	3-6 3-7
	Switching Multivibrator	3-7 3-8
	Delay-Line Driver Reference Feedback Amplifier	3-8
	Normal Trigger Pickoff Amplifier	3-8
	Vertical Output Amplifier	0.0
	General	3-8
	Delay Line	3-9
	Output Amplifier	3-9
	A and B Trigger Generators	
	General	3-9
	Trigger Source	3-9
	Trigger Coupling	3-9
	Input Source Follower	3-9
	Paraphase Amplifier	3-9
	Tunnel Diode Driver	3-10
	A And B Sweep Generators	
	General	3-10
	Disconnect Amplifier	3-10
	Sawtooth Sweep Generator	3-11
	Output Buffer Amplifier	3-11
	Sweep Start Amplifier	3-11
	Logic Multivibrator	3-11
	B Sweep Generator Differences	3-11
	Sweep And Z Axis Logic Circuit	0.44
	General	3-11
	A Sweep Gate	3-11
	B Sweep Gate	3-12
	Sweep Control Integrated Circuit	3-12 3-13
	A Sweep Holdoff Amplifier B Sweep Holdoff Amplifier	3-13 3-13
	A Sweep Z-Axis Gate	3-13 3-13
	B Sweep Z-Axis Gate	3-13
	+A GATE And +B GATE Emitter Followers	3-13
	B Sweep Latch	3-14
	Horizontal Amplifier	0.14
	General	3-14
	X-Axis Amplifier	3-14
	Input Paraphase Amplifier	3-15
	Gain Setting Amplifier	3-15
	Output Amplifier	3-15
	CRT Circuit	
	General	3-15
	High-Voltage Oscillator	3-16
	High-Voltage Regulator	3-16
	High-Voltage Rectifiers and Output	3-17
	CRT Control Circuits	3-17
	Z-Axis Amplifier	3-17
	DC Restorer Circuit	3-17
	Calibrator	
	General	3-18
	Multivibrator	3-18
	Output Amplifier	3-18
	A Trigger View Amplifier	
	General	3-18
	Amplifier	3-18

SECTION 3	CIRCUIT DESCRIPTION (cont) Low-Voltage Power Supply General	Page 3-19
	Power Input	3-20
	Secondary Circuit Fan Motor Circuit	3-20
	General	3-20
SECTION 4	MAINTENANCE Cabinet Removal Preventive Maintenance	4-1
	General	4-1
	Cleaning	4-1
	Lubrication	4-2
	Transistors Checks	4-2
	Recalibration	4-2
	Corrective Maintenance	
	General	4-2
	Obtaining Replacement Parts	4-2
	Soldering Techniques	4-3
	Component Replacement	4-3
	Recalibration After Repair	4-5
	Instrument Repackaging	4-6
SECTION 5	CALIBRATION	
	Calibration Interval	5-1
	TEKTRONIX Field Service	5-1
	Using This Procedure	5-1
	Test Equipment Required	5-1
	Performance Check	
	Vertical System Check	5-6
	Trigger System Check	5-1
	Horizontal System Check	5-13
	Short-Form Calibration	
	Power Supplies And Display	5-10
	Vertical System	5-17
	Trigger System	5-19
	Horizontal System	5-2
	Detailed Calibration	- 0
	Power Supply	5-27
	Display & Z-Axis	5-28
	Vertical System	5-30
	Trigger System	5-43
	Horizontal System	5-53
	Calibrator, Gates, & Ext Z-Axis	5-60
SECTION 6	ELECTRICAL PARTS LIST	
SECTION 7	DIAGRAMS & CIRCUIT BOARD ILLUSTRATIONS	
SECTION 8	MECHANICAL PARTS LIST & ILLUSTRATIONS	

iii

CHANGE INFORMATION

465 SPECIFICATIONS

Introduction

The 465 Oscilloscope is a wide-band, portable oscilloscope designed to operate in a wide range of environmental conditions. The instrument is light in weight and compact of design for ease of transportaion, yet capable of performance necessary for accurate high-frequency measurements. The dual-channel, DC-to-100 megahertz vertical deflection system provides calibrated deflection factors from 5 millivolts to 5 volts/division. The bandwidth limiting switch reduces interference from signals above about 20 megahertz for viewing low-frequency, low-level signals.

The trigger circuits provide stable sweep triggering to beyond the bandwidth of the vertical deflection system. Separate controls are provided to select the desired mode of triggering for the A and B sweeps. The A sweep can be operated in one of three modes: automatic triggering, normal triggering, or single sweep. A variable trigger holdoff control provides the ability for A sweep to trigger stably on aperiodic signals or complex digital words. The horizontal deflection system has calibrated sweep rates from 0.5

second to 0.05 microsecond/division. A X10 magnifier increases each sweep rate by a factor of 10 to provide a maximum sweep rate of 5 nanoseconds/division in the 0.05 μ s position. The delayed and mixed sweep features allow the start of the B sweep to be delayed a selected amount from the start of A sweep to provide accurate relative-time measurements. Calibrated X-Y measurements can be made with Channel 2 providing the vertical deflection and Channel 1 providing the horizontal deflection (TIME/DIV switch fully counterclockwise and VERT MODE switch to CH 2). The regulated DC power supplies ensure that instrument performance is not affected by variations in line voltage and frequency. Maximum power consumption of the instrument is approximately 75 watts.

The following instrument specifications apply over an ambient temperature range of -15° C to $+55^{\circ}$ C unless otherwise specified. Warm-up time for specified accuracies is 20 minutes. The calibration procedure given in section 5, if performed completely, will allow an instrument to meet the electrical characteristics listed below.

VERTICAL DEFLECTION SYSTEM

Deflection Factor

Calibrated range is from 5 millivolts to 5 volts per division in 10 steps in a 1-2-5 sequence. Accuracy is within 3%. Uncalibrated VAR control provides deflection factors continuously variable between the calibrated settings, and extends deflection factor to at least 12.5 volts per division in the 5 volts/div position.

Frequency Response

Bandwidth in both Channel 1 and Channel 2 is DC to at least 100 megahertz. Risetime is 3.5 nanoseconds or less. The AC-coupled lower —3 dB point is 10 hertz or less (1 hertz or less when using a 10X probe). Vertical system bandwidth with the BW LIMIT pushbutton pulled is approximately 20 megahertz.

Chopped Mode Repetition Rate

Approximately 250 kilohertz.

Input Resistance And Capacitance

One megohm within 2% paralleled by approximately 20 picofarads.

Maximum Input Voltage

DC coupled: 250 V (DC + Peak AC) or 500 V P-P AC at 1 kHz or less.

AC coupled: 500 V (DC + Peak AC) or 500 V P-P AC at 1 kHz or less.

Cascaded Operation (CH 1 VERT SIGNAL OUT Connected to CH 2 OR Y)

Bandwidth is DC to at least 50 MHz with a sensitivity of at least 1 mV/division.

TRIGGERING

Sensitivity

DC Coupled: 0.3 division internal or 50 millivolts external from DC to 25 megahertz, increasing to 1.5 divisions internal or 150 millivolts external at 100 megahertz.

AC Coupled: 0.3 division internal or 50 millivolts external from 60 hertz to 25 megahertz, increasing to 1.5 divisions internal or 150 millivolts external at 100 megahertz. Attenuates all signals below about 60 hertz.

Specifications-465

LF REJ Coupled: 0.3 division internal or 100 millivolts external from 50 kilohertz to 25 megahertz, increasing to 1.5 divisions internal or 300 millivolts external at 100 megahertz. Blocks DC and attenuates all signals below about 50 kilohertz.

HF REJ Coupled: 0.3 division internal or 50 millivolts external from 60 hertz to 50 kilohertz. Blocks DC and attenuates all signals below about 60 hertz and above about 50 kilohertz.

Trigger Jitter

0.5 nanosecond or less at 5 nanoseconds/division with 100 megahertz applied (X10 MAG on).

External Trigger Input

Maximum input voltage is 250 V DC + peak AC or 250 V P-P AC (1 kilohertz or less). Input resistance is 1 megohm within 10%.

LEVEL Control Range

EXT: At least + and - 2 volts, 4 volts peak to peak.

EXT \div 10: At least + and - 20 volts, 40 volts peak to peak.

HORIZONTAL DEFLECTION SYSTEM

Calibrated Sweep Range

A Sweep: from 0.5 second/division to 0.05 microsecond/division in 22 steps in a 1-2-5 sequence. X10 MAG extends maximum sweep rate to 5 nanoseconds/division.

B Sweep: from 50 milliseconds/division to 0.05 microsecond/division in 19 steps in a 1-2-5 sequence. X10 MAG extends maximum sweep rate to 5 nanoseconds/division.

Calibrated Sweep Accuracy

Unmagnified sweep accuracy is $\pm 2\%$ from $+20^{\circ}$ C to $+30^{\circ}$ C ($+68^{\circ}$ F to $+86^{\circ}$ F) and $\pm 3\%$ from -15° C to $+20^{\circ}$ C and $+30^{\circ}$ C to $+55^{\circ}$ C ($+5^{\circ}$ F to $+68^{\circ}$ F and $+86^{\circ}$ F to $+131^{\circ}$ F). For the same temperature ranges, magnified sweep accuracy is $\pm 3\%$ and $\pm 4\%$ respectively. Exclude the first and last 50 ns of the 5 ns, 10 ns, and 20 ns magnified sweep rates. Accuracy specifications apply over full ten divisions unless otherwise specified.

Sweep accuracy, over any two or less division portion of the sweep, is $\pm 5\%$. Exclude the first and last magnified divisions of the 5 ns and 10 ns/div magnified sweep rates. Also exclude the first and last 50 ns of the 5, 10, and 20 ns/div magnified sweep rates.

Mixed sweep accuracy is 2% plus the measured A sweep error when viewing the A sweep portion only. The B sweep portion retains its normal accuracy.

A Time/Division Variable Range

Provides continuously variable (uncalibrated) sweep rates between the calibrated settings of the A TIME/DIV switch. Extends the slowest A sweep rate to at least 1.25 seconds/division.

A Trigger Holdoff

Increases A sweep holdoff time by at least a factor of 10.

Delay Time And Differential Time Measurement Accuracy

	+15°C to +35°C (+60°F to +95°F)	-15°C to +55°C (+5°F to +131°F)
Over One Or More Major Dial Division	±1%	±2.5%
Over Less Than One Major Dial Division	±0.01 Major Dial Division	±0.03 Major Dial Division

Delay Time Jitter

Within 0.002% (less than one part in 50,000) of the maximum available delay time when operating on power line frequencies other than 50 Hz.

Within 0.005% (less than one part in 20,000) of the maximum available delay time when operating on 50 Hz power line frequency.

Maximum available delay time is ten times the setting of the A TIME/DIV switch.

Calibrated Delay Time (A VAR set to calibrated position)

Continuous from 5 seconds to 0.2 microsecond.

- b. Adjust the CH 1 POSITION control for a 0 volt reading on the meter.
- c. ADJUST-Vertical Output Centering adjustment, R429, (see Fig. 5-9) to position the trace to the center graticule line.
 - d. Remove the DC Voltmeter lead connections.
- e. Position the trace off-screen with the CH 1 POSI-TION and horizontal POSITION controls.
 - f. Push the BEAM FIND button and hold it in.
- g. CHECK-That the trace is brought into the CRT viewing area.
 - h. Release the BEAM FIND button.

11. Adjust CH 1 Step Attenuator Balance

- a. Set the CH 1 VOLTS/DIV switch to 20 mV and the CH 1 INPUT COUPLING switch to GND.
- b. Position the trace to the center horizontal graticule line.
- c. CHECK—CRT display for 0.2 division or less of trace shift between adjacent switch positions when rotating the CH 1 VOLTS/DIV switch from 20 mV to 5 mV.

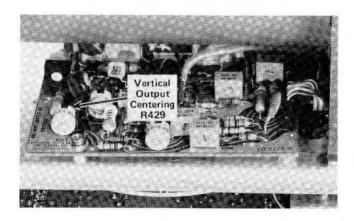


Fig. 5-9. Location of Vertical Output Centering adjustment.

d. ADJUST-CH 1 Step Atten Bal adjustment, R25, (see Fig. 5-10) for minimum trace shift when rotating the CH 1 VOLTS/DIV switch from 20 mV to 5 mV.

12. Adjust CH 1 Variable Volts/Division Balance

- a. Position the trace to the center horizontal graticule line.
- b. CHECK—That the CH 1 UNCAL light comes on when the VAR control is out of the detent position.
- c. CHECK—CRT display for 1.0 division or less of trace shift when rotating the CH 1 VAR control through its range.
- d. ADJUST-CH 1 Variable Balance adjustment, R120, (see Fig. 5-11) for minimum trace shift when rotating the CH 1 VAR control through its range.
 - e. Return the CH 1 VAR control to the detent position.

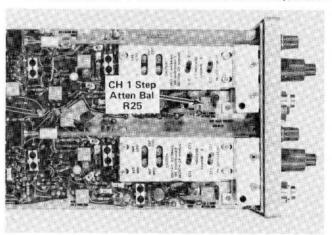
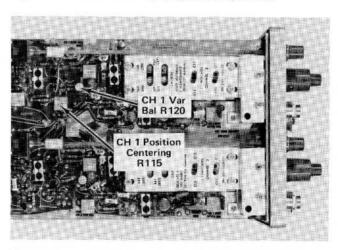
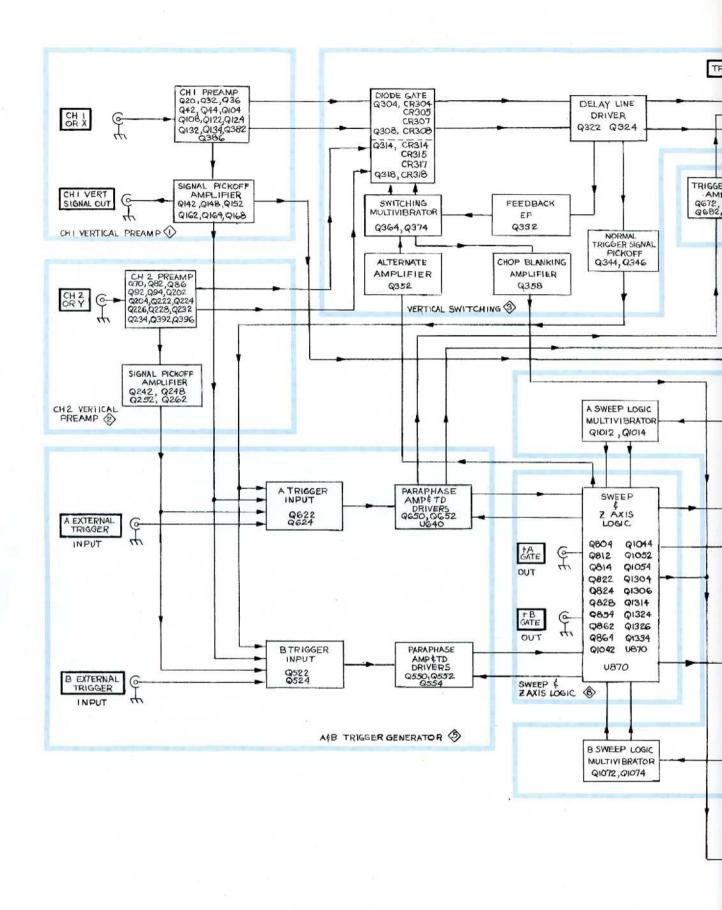
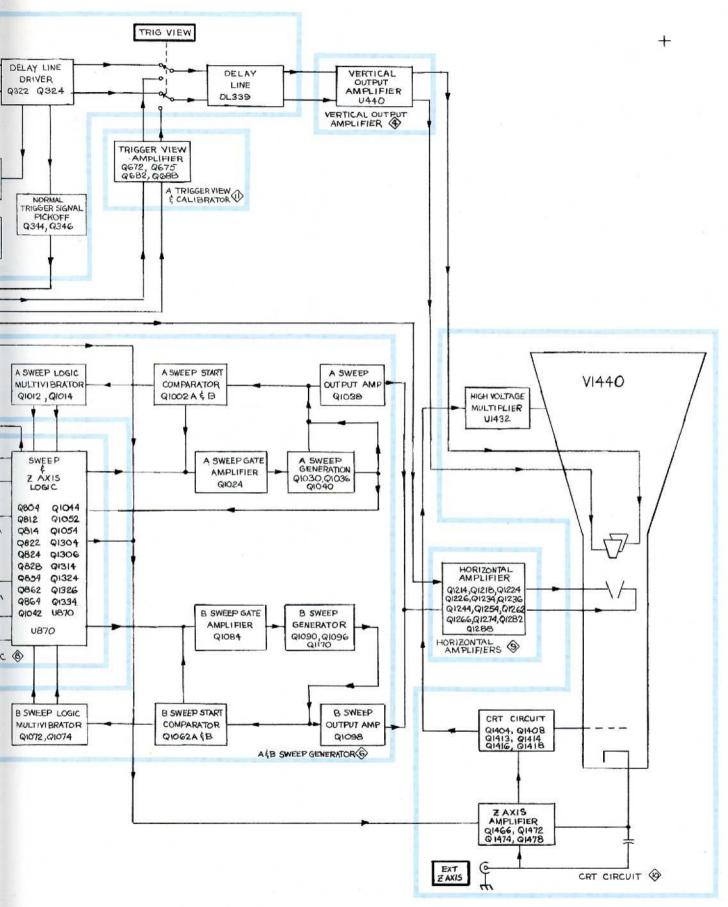
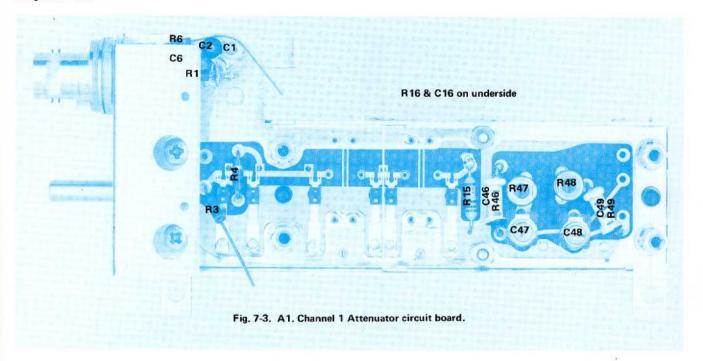
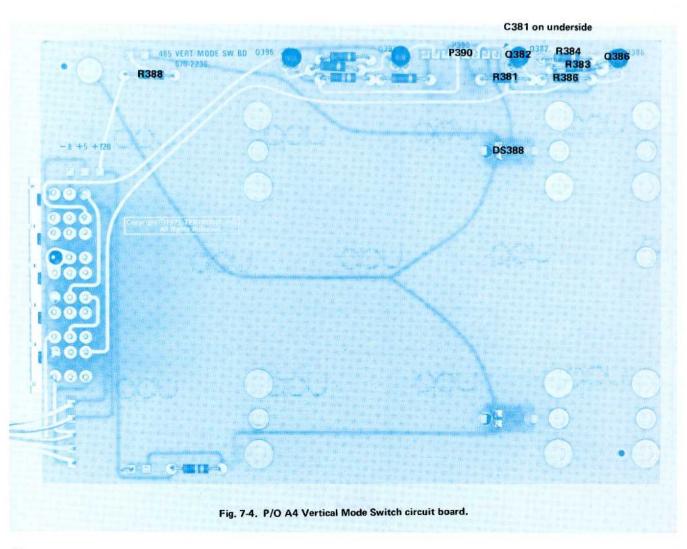


Fig. 5-10. Location of CH 1 Step Atten Bal adjustment.


Fig. 5-11. Location of CH 1 Variable Balance and Position Centering adjustment.

Ch. N.	Tektronix	Serial/Model			
Ckt. No.	Part No.	Eff	Disc		Description
DIODES (cont)					
CR825	152-0141-02	2		Silicon,	1N4152
CR826	152-0141-02	?		Silicon,	
CR831	152-0141-02			Silicon,	
CR832	152-0141-02			Silicon,	
CR838	152-0141-02		•	Silicon,	
CR851	152-0322-00			Silicon,	
CR859	152-0141-02			Silicon,	
CR863	152-0141-02			Silicon,	
CR879	152-0141-02			Silicon,	
				,	
CR1001	152-0141-02			Silicon,	
CR1004	152-0141-02	2		Silicon,	1N4152
CR1011	152-0141-02	2		Silicon,	1N4152
CR1024	152-0141-02	2		Silicon,	
CR1035	152-0141-02	2		Silicon,	1N4152
CR1042	152-0141-02	2		Silicon,	1N4152
CR1043	152-0141-02	2		Silicon,	1N4152
CR1061	152-0141-02	2		Silicon,	1N4152
CR1064	152-0141-02	2		Silicon,	
CR1071	152-0141-02)		Silicon,	1 NA 1 5 2
CR1071	152-0141-02			Silicon,	
CR1093	152-0141-02			Silicon,	
CR1101 CR1102	152-0141-02			Silicon,	
CR1102 CR1155	152-0333-00			Silicon,	
CR1201	152-0141-02			Silicon,	
CR1201 CR1202	152-0141-02			Silicon,	
CR1202 CR1216	152-0141-02			Silicon,	
CR1218 CR1248	152-0141-02			Silicon,	
CRIZ40	132-0141-02	•		SITICOII,	
CR1251	152-0153-00)			FD7003 or CD5574
CR1252	152-0153-00)		Silicon,	FD7003 or CD5574
CR1253	152-0322-00)		Silicon,	A1108
CR1255	152-0141-02	2		Silicon,	1N4152
CR1273	152-0322-00)		Silicon,	A1108
CR1275	152-0141-02	2		Silicon,	1N4152
CR1286	152-0141-02	2		Silicon,	1N4152
CR1304	152-0141-02	2		Silicon,	
CR1306	152-0141-02	2		Silicon,	1N4152
CR1309	152-0141-02	,		Silicon,	1 N 4 1 5 2
CR1309	152-0141-02			Silicon,	
CR1315	152-0141-02			Silicon,	
CR1316 CR1325	152-0141-02			Silicon,	
CR1325 CR1326	152-0141-02			Silicon,	
CR1326 CR1327	152-0141-02			Silicon,	
CR1327 CR1334	152-0141-02				
CR1334 CR1335	152-0141-0			Silicon,	
		-		Silicon,	
CR1336	152-0141-02	4		Silicon,	TN4T2

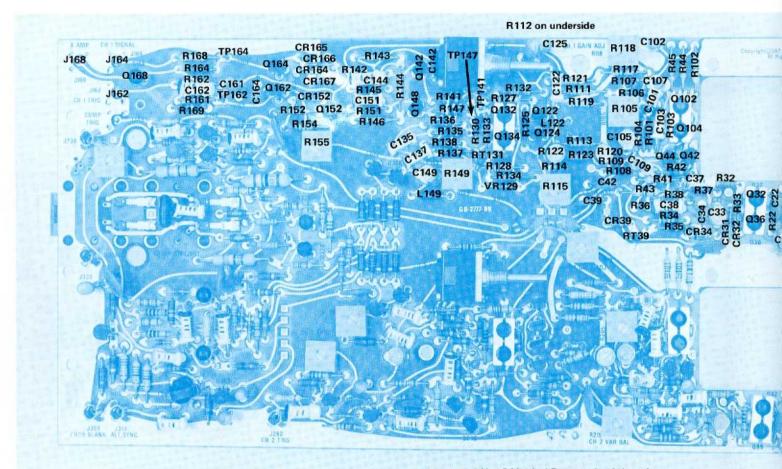
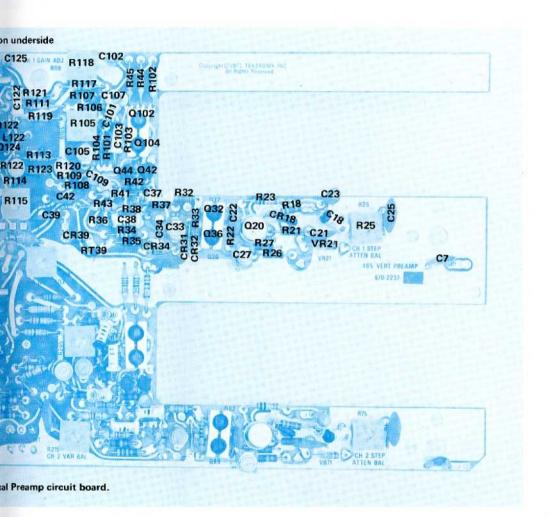



Fig. 7-5. P/O A3 Vertical Preamp circuit board.

- c. Adjust the A LEVEL control for a stable display.
- d. Position the top of the display to the bottom graticule line.
- e. CHECK CRT display for less than 5% aberrations.
- f. Set the Pulse Generator polarity to and the 465 A SLOPE switch to -.
- g. Position the bottom of the display to the top graticule line.
- h. CHECK CRT display for less than 7% aberrations.

31. Adjust CH 1 High-Frequency Compensation

- a. Move the test signal from CH 2 to the CH 1 input.
- b. Set the A TIME/DIV switch to 0.05 μs , the A SLOPE switch to +, and the VERT MODE switch to CH 1.
- c. Set the Fast-Rise High-Amplitude Pulse Generator (Type 109) to + and adjust the Pulse Generator for five divisions of deflection. Remove or add attenuators as necessary to maintain a five division display throughout this step.
- d. CHECK CRT display for risetime of 3.5 nanoseconds or less.
- e. CHECK CRT display for flat-top waveform with 3% or less of aberrations.
- f. ADJUST C27, C33, C105, R105, R122, C122, C149, and R149 (see Fig. 5-23) with a low-capacitance screwdriver, for the best flat-top waveform.
- g. Set the Pulse Generator polarity to and the 465 A SLOPE switch to -.

TABLE OF CONTENTS

		Page
LIST OF ILLUS	STRATIONS	v
LIST OF TABL	LES .	v
SECTION 1	SPECIFICATIONS	
	Introduction	1-1
	VERTICAL DEFLECTION SYSTEM	1-1
	TRIGGERING	1-1
	HORIZONTAL DEFLECTION SYSTEM	1-2
	X-Y OPERATION	1-2
	CALIBRATOR	1-3
	Z-AXIS INPUT	1-3
	SIGNAL OUTPUTS	1-3
	POWER SOURCE	1-3
	CATHODE RAY TUBE (CRT)	1-3
	SUPPLEMENTAL INFORMATION	1-3
	Vertical Deflection System	1-3
	Triggering	1-4
	Horizontal Deflection System	1-4
	Calibrator	1-4
	External Z-Axis Input	1-4
	Output Resistances	1-4
	Cathode Ray Tube (CRT)	1-4
SECTION 2	OPERATING INFORMATION	
	Introduction	2-1
	Instrument Repackaging	2-1
	Operating Voltage	2-1
	CONTROLS AND CONNECTORS	2-2
	Introduction	2-2
	Cathode Ray Tube (CRT) and Display	2-2
	Vertical Deflection System	
	Channel 1 and Channel 2	2-2
	A and B Triggering	2-4
	A and B Sweep	2-5
	Calibrator and Power	2-6
	Rear Panel	2-6
	OBTAINING BASIC DISPLAYS	2-6
	Introduction	2-6
	Normal Sweep Display	2-6
	Magnified Sweep Display	2-7
	Delayed Sweep Display	2-7
	Mixed Sweep Display	2-7
	X-Y Display	2-7

SECTION 3	CIRCUIT DESCRIPTION	Page
	Introduction	3-1
	Digital Logic	3-1
	BLOCK DIAGRAM	3-1
	CHANNEL 1 PREAMP	3-3
	Introduction	3-3
	Scale Factor Switching	3-4
	Input Coupling	3-4
	Input Attenuator	3-4
	Source Follower	3-4
	First Cascode Amplifier	3-5
	Second Cascode Amplifier	3-5
	Third Cascode Amplifier	3-5
	CHANNEL 2 PREAMP	3-5
	Introduction	3-5
	Second Cascode Amplifier	3-5
	Third Cascode Amplifier	3-6
	VERTICAL SWITCHING CIRCUIT	3-6
	Introduction	3-6
	Diode Gates	3-6
	Switching Multivibrator	3-7
	Delay Line Driver	3-9
	Reference Feedback Amplifier	3-9
	Normal Trigger Pickoff	3-9
	VERTICAL OUTPUT AMPLIFIER	3-9
	Introduction	3-9
	Delay Line	3-9
	Vertical Output Amplifier—Discrete Version	3-9
	Vertical Output Amplifier—IC Version	3-10
	A AND B TRIGGER GENERATORS	3-10
	Introduction	3-10
	Trigger Source	3-10
	Trigger Coupling	3-10
	Input Source Follower	3-10
	Paraphase Amplifier	3-10
	Tunnel Diode Driver	3-11
	A AND B SWEEP GENERATOR	3-11
	Introduction	3-11
	Disconnect Amplifier	3-12
	Output Buffer Amplifier	3-12
	Sweep Start Amplifier	3-12
	Logic Multivibrator	3-12
	B Sweep Differences	3-12
	SWEEP AND Z-AXIS LOGIC CIRCUIT	3-13
	Introduction	3-13
	A Sweep Gate	3-13

ii

	_	- rage
SECTION 3 (co	ont) B Sweep Gate	3-13
	Sweep Control Integrated Circuit	3-13
	Holdoff Timing	3-14
	A Sweep Holdoff Amplifier	3-14
	B Sweep Holdoff Amplifier	3-14
	B Sweep Latch	3-14
	A Sweep Z Axis Gate	3-14
	B Sweep Z Axis	3-15
	A \pm Gate and B \pm Gate Emitter Followers	3-15
	HORIZONTAL AMPLIFIER	3-15
	Introduction	3-15
	X-Axis Amplifier	3-15
	Input Paraphase Amplifier	3-16
	Gain Setting Amplifier	3-16
	Output Amplifier	3-16
	CRT CIRCUIT	3-17
	Introduction	3-17
	High Voltage Oscillator	3-17
	High Voltage Regulator	3-18
	High Voltage Rectifier and Output	3-18
	CRT Control Circuits	3-18
	Z Axis Amplififer	3-18
	DC Restorer Circuit	3-19
	CALIBRATOR	3-19
	Introduction	3-19
	Multivibrator	3-19
	Output Amplifier	3-19
	A TRIGGER VIEW AMPLIFIER	3-20
	Introduction	3-20
	Amplifier	3-20
	LOW VOLTAGE POWER SUPPLY	3-20
	Introduction	3-20
	Power Input	3-20
	Secondary Circuit	3-20
	FAN MOTOR CIRCUIT	3-22
SECTION 4	MAINTENANCE	
	Introduction	4-1
	Cabinet Removal	4-1
	PREVENTIVE MAINTENANCE	4-1
	Introduction	4-1
	Cleaning	4-1
	Visual Inspection	4-2
	Lubrication	4-3
	Semiconductor Checks	4-3
	Recalibration	4-3

	•	Page
SECTION 4 (cont)	TROUBLESHOOTING	4-3
	Introduction	4-3
	Troubleshooting Aids	4-3
	Troubleshooting Equipment	4-5
	Troubleshooting Techniques	4-5
	CORRECTIVE MAINTENANCE	4-7
	Introduction	4-7
	Obtaining Replacement Parts	4-7
	Soldering Techniques	4-8
	Component Removal and Replacement	4-9
	Recalibration After Repair	4-14
	Instrument Repackaging	4-14
SECTION 5	PERFORMANCE CHECK	
	Purpose	5-1
	Limits and Tolerances	5-1
	Line Voltage Selection	5-1
	Equipment Required	5-1
	Special Fixtures	5-1
	Test Equipment Alternatives	5-1
	INDEX TO PERFORMANCE CHECK	5-1
	VERTICAL	5-3
	TRIGGERS	5-7
	HORIZONTAL	5-10
SECTION 6	CALIBRATION	
	Purpose	6-1
	Limits and Tolerances	6-1
	Step Titles	6-1
	Line Voltage Selection	6-1
	Internal Adjustments	6-1
	Display	6-1
	Test Equipment Required	6-1
	Interactions	6-1
	INDEX TO CALIBRATION PROCEDURE	6-5
	POWER SUPPLY	6-8
	DISPLAY AND Z-AXIS VERTICAL	6-10
	TRIGGERS	6-12 6-24
	HORIZONTAL	6-24 6-35
	GATES, CALIBRATOR AND EXT Z-AXIS	6-43
	GATES, CALIBRATOR AND EXT 2-AXIS	0-43
SECTION 7	ELECTRICAL PARTS LIST	7-1
	OPTIONS	TAB PAGE
SECTION 8	DIAGRAMS	8-1
SECTION 9	MECHANICAL PARTS LIST	9-1
	CHANGE INFORMATION	

įν

LIST OF ILLUSTRATIONS

		Page
Fig. 1-1	465 Oscilloscope	
Fig. 2-1	Power supply regulating range selector.	2-2
Fig. 2-2	Front and rear panel controls and connectors.	2-2
Fig. 3-1	Basic block diagram of the 465.	3-2
Fig. 3-2	Detailed block diagram of the Channel 1 Preamplifier.	3-3
Fig. 3-3	Detailed block diagram of the Channel 2 Preamplifier.	3-6
Fig. 3-4	Detailed block diagram of the Vertical Switching Circuit.	3-7
Fig. 3-4	Effect of Diode Gates on signal path (simplified Vertical	
	Switching diagram). Conditions shown for CH 1 position of	
	Vertical Mode switch.	3-8
Fig. 3-6	Detailed block diagram of the A Sweep Generator.	3-11
Fig. 3-7	Detailed block diagram of the Horizontal Amplifier.	3-16
Fig. 3-8	Detailed block diagram of the CRT and Z-Axis circuits.	3-17
Fig. 3-9	Detailed block diagram of the Calibrator circuit.	3-19
Fig. 3-10	Detailed block diagram of the Trigger View Amplifier.	3-20
Fig. 3-11	Detailed block diagram of the Low Voltage Power Supply.	3-21
Fig. 3-12	Foldover circuit action.	3-22
Fig. 4-1	Removing the wrap around cabinet.	4-1
Fig. 4-2	Color codes.	4-4

LIST OF TABLES

		Page			Page
2-1	REGULATING RANGES	2-1	6-1	ADJUSTMENT INTERACTIONS	6-2
			6-2	TEST EQUIPMENT REQUIRED	6-3
2.1	GAIN SWITCHING AND ATTENUATION	2.4	6-3	LOW VOLTAGE POWER SUPPLY	
J-1	GAIN SWITCHING AND ATTENUATION	3-4		LIMITS	6-8
			6-4	TYPICAL LOW VOLTAGE POWER	
5-1	DEFLECTION FACTOR ACCURACY	5-5		SUPPLY RIPPLE	6-9
5-2	LOW FREQUENCY COMPENSATION		6-5	VERTICAL DEFLECTION FACTOR	
	SETUP	5-5		ACCURACY	6-16
5-3	A AND B TIMING ACCURACY	5-10	6-6	A AND B TIMING ACCURACY	6-39
5-4	DELAY OR DIFFERENTIAL		6-7	A AND B MAGNIFIED ACCURACY	6-39
	TIME ACCURACY	5-11	6-8	DIFFERENTIAL TIME ACCURACY	6-40

@

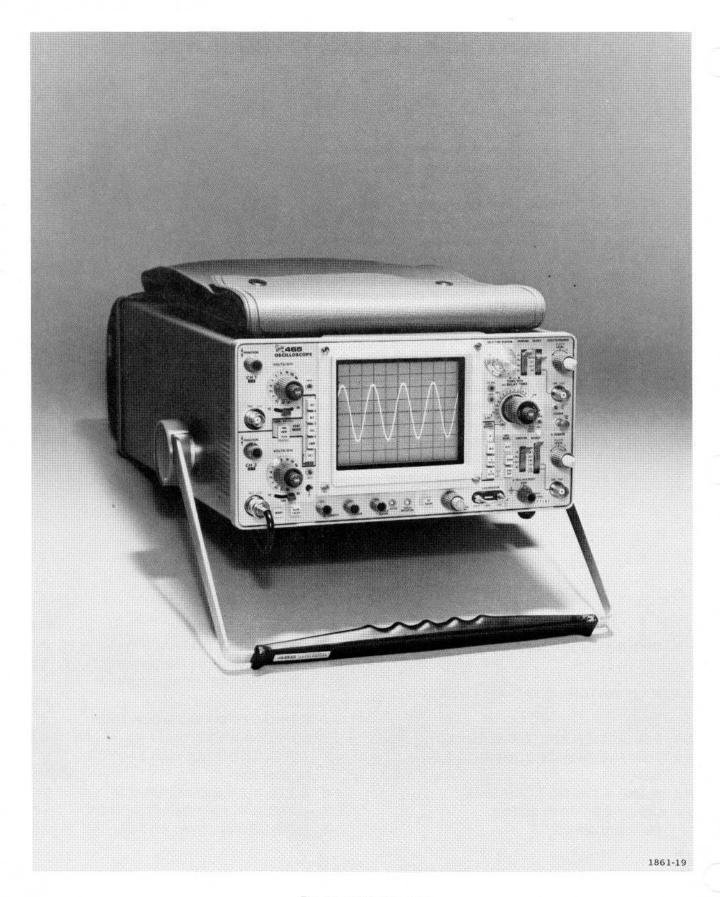


Fig. 1-1. 465 Oscilloscope.

SPECIFICATIONS

Introduction

The 465 Oscilloscope is a wide-band, portable oscilloscope designed to operate in a wide range of environmental conditions. The instrument is light in weight and compact of design for ease of transportation, yet capable of performance necessary for accurate high-frequency measurements. The dual-channel dc-to-100 megahertz vertical deflection system provides calibrated deflection factors from 5 millivolts to 5 volts/division. The bandwidth limiting switch reduces interference from signals above about 20 megahertz for viewing low-frequency, low-level signals.

The trigger circuits provide stable sweep triggering to beyond the bandwidth of the vertical deflection system. Separate controls are provided to select the desired mode of triggering for the A and B sweeps. The A sweep can be operated in one of three modes: automatic triggering. normal triggering, or single sweep. A variable trigger holdoff control provides the ability for A sweep to trigger stably on aperiodic signals or complex digital words. The horizontal deflection system has calibrated sweep rates from 0.5 second to 0.05 microsecond/division. A X10 magnifier increases each sweep rate by a factor of 10 to provide a maximum sweep rate of 5 nanoseconds/division in the 0.05 μs position. The delayed and mixed sweep features allow the start of the B sweep to be delayed a selected amount from the start of A sweep to provide accurate relative-time measurements. Calibrated X-Y measurements can be made with Channel 2 providing the vertical deflection and Channel 1 providing the horizontal deflection (TIME/DIV switch fully counterclockwise and VERT MODE switch to CH 2). The regulated dc power supplies ensure that instrument performance is not affected by variations in line voltage and frequency. Maximum power consumption of the instrument is approximately 75 watts.

The following instrument specifications apply over an ambient temperature range of -15° C to $+55^{\circ}$ C unless otherwise specified. Warm-up time for specified accuracies is 20 minutes. The calibration procedure given in section 6, if performed completely, will allow an instrument to meet the electrical characteristics listed below.

VERTICAL DEFLECTION SYSTEM

Deflection Factor

Calibrated range is from 5 millivolts to 5 volts/division in 10 steps in a 1-2-5 sequence. Accuracy is within 3%. Uncalibrated VAR control provides deflection factors continuously variable between the calibrated settings and extends deflection factor to at least 12.5 volts/division in the 5 VOLTS/DIV position.

Frequency Response

Bandwidth in both Channel 1 and Channel 2 is dc to at least 100 megahertz from -15° C to $+40^{\circ}$ C and dc to at least 85 megahertz from $+40^{\circ}$ C to $+55^{\circ}$ C. Risetime is 3.5 nanoseconds or less from 0° C to $+40^{\circ}$ C and 4.2 nanoseconds or less from $+40^{\circ}$ C to $+55^{\circ}$ C. The accoupled lower -3 dB point is 10 hertz or less (1 hertz or less when using a 10X probe). Vertical system bandwidth with the BW LIMIT pushbutton pulled is approximately 20 megahertz.

Chopped Mode Repetition Rate

Approximately 250 kilohertz.

Input Resistance And Capacitance

One megohm within 2% paralleled by approximately 20 picofarads.

Maximum Input Voltage

Dc coupled: 250 V (dc \pm peak ac) or 500 V p-p ac at 1 kHz or less.

Ac coupled: 500 V (dc \pm peak ac) or 500 V p-p ac at 1 kHz or less.

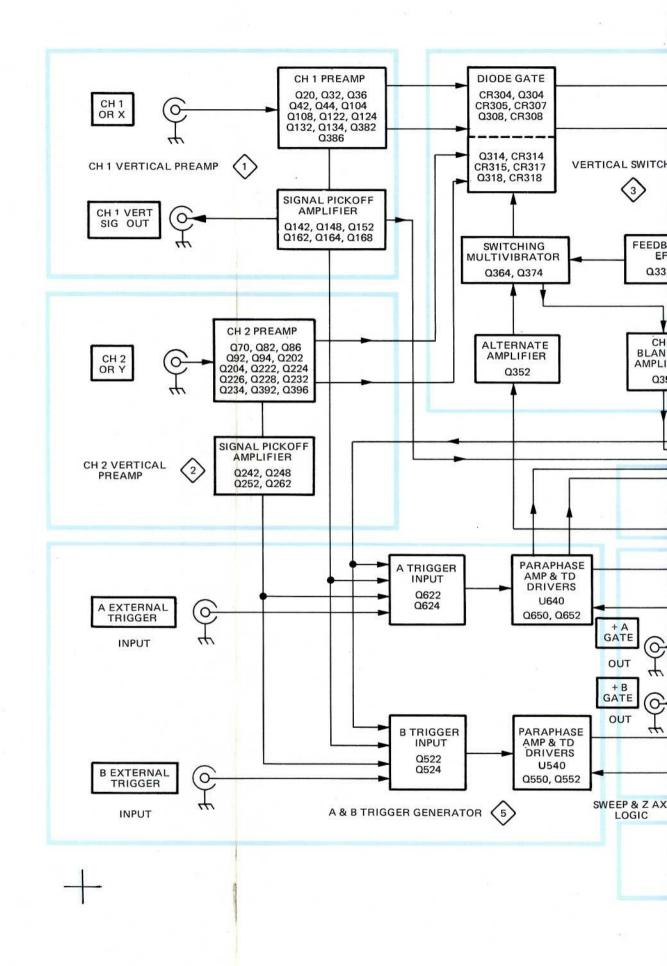
Cascaded Operation (CH 1 VERT SIGNAL OUT Connected to CH 2 OR Y)

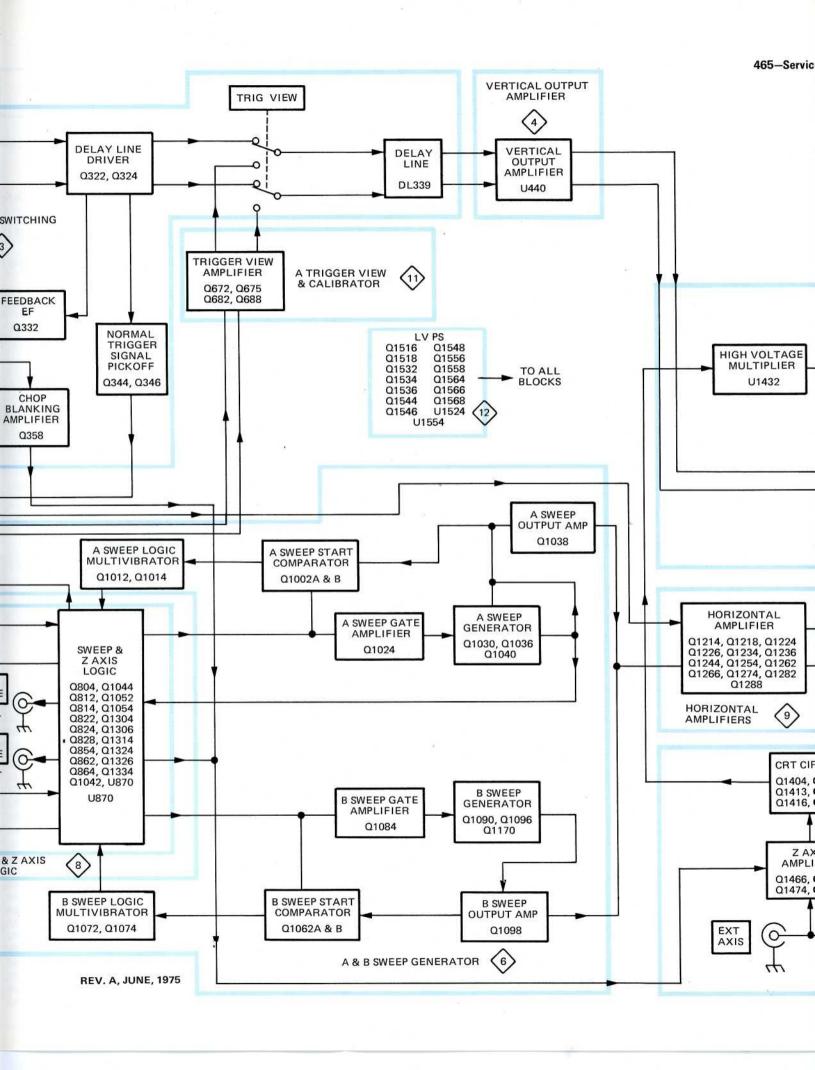
Bandwidth is dc to at least 50 MHz with a sensitivity of at least 1 millivolt/division.

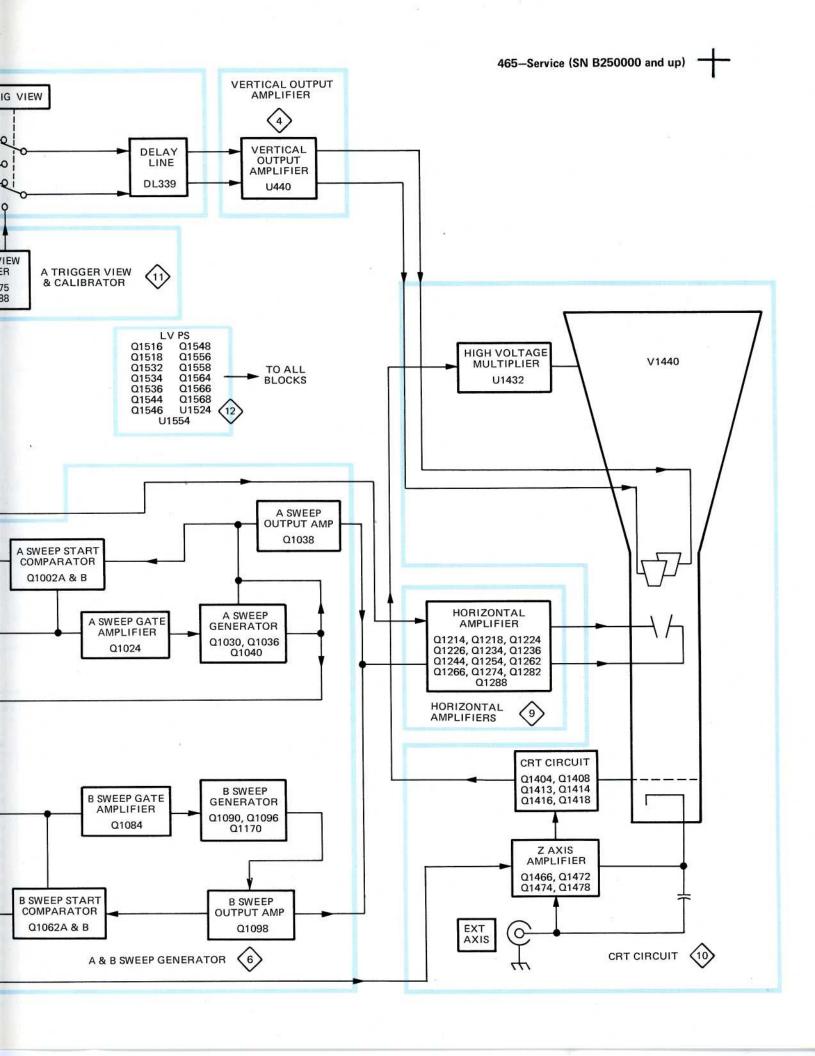
TRIGGERING

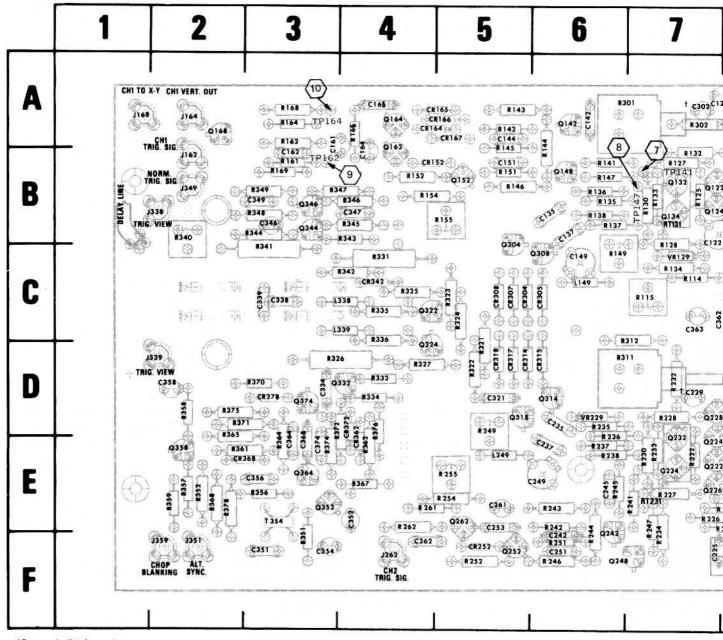
Sensitivity

DC Coupled: 0.3 division internal or 50 millivolts external from dc to 25 megahertz, increasing to 1.5 divisions internal or 150 millivolts external at 100 megahertz.

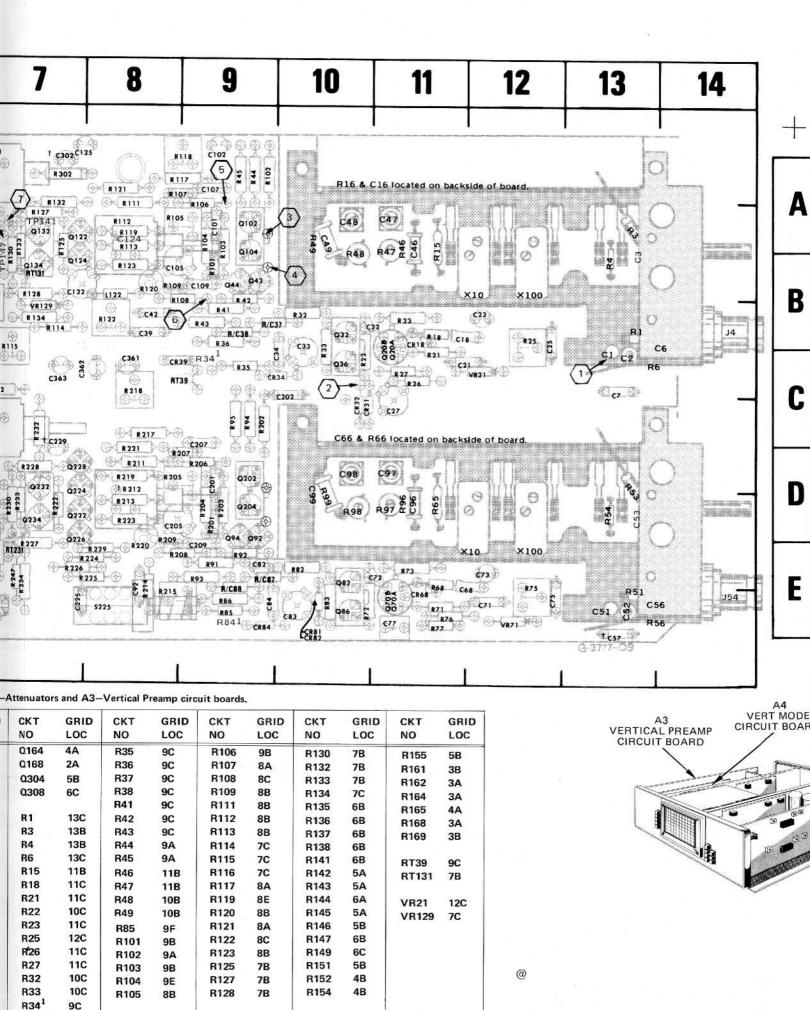

AC Coupled: 0.3 division internal or 50 millivolts external from 60 hertz to 25 megahertz, increasing to 1.5 divisions internal or 150 millivolts external at 100 megahertz. Attenuates all signals below about 60 hertz.

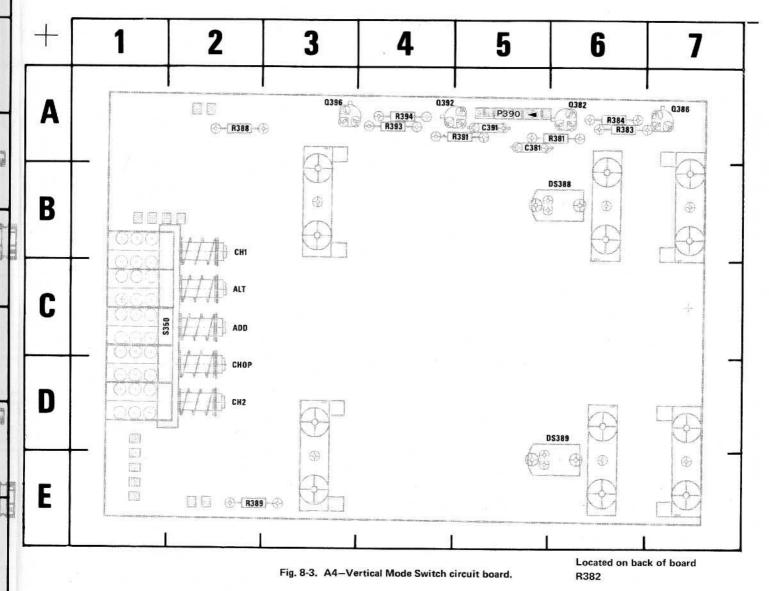

LF REJ Coupled: 0.5 division internal or 100 millivolts external from 50 kilohertz to 25 megahertz, increasing to 1.5 divisions internal or 300 millivolts external at


REV. B, JUNE, 1975


	Taliana min	Cautal/AAaalal Nia		Mfr	
Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Nama & Docariation		Mfr Part Number
	· · · · · · · · · · · · · · · · · · ·	ETT DSCOUL	Name & Description	Code	Mir Pari Number
CR68	152-0323-00		SEMICOND DEVICE:SILICON, 35V, 100MA		SE365
CR81	152-0153-00		SEMICOND DEVICE:SILICON,15V,50MA		FD7003
CR82	152-0153-00		SEMICOND DEVICE:SILICON,15V,50MA SEMICOND DEVICE:SILICON,10PF	01281	FD7003
CR84 CR152	152-0271-00 152-0141-02		SEMICOND DEVICE:SILICON,10PF SEMICOND DEVICE:SILICON,30V,150MA		1N4152
CRIJZ	132-0141 02		BENICOND DEVICE. BILICON, 30V, 130FA	0,510	1114175
CR164	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	07910	1N4152
CR165	152-0141-02		SEMICOND DEVICE: SILICON, 30V, 150MA	07910	1N4152
CR166	152-0141-02		SEMICOND DEVICE: SILICON, 30V, 150MA		1N4152
CR167	152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA		1N4152
CR252	152-0141-02		SEMICOND DEVICE: SILICON, 30V, 150MA	07910	1N4152
CR304	152-0153-00		SEMICOND DEVICE:SILICON,15V,50MA	13715	FD7003
CR305	152-0153-00		SEMICOND DEVICE:SILICON,15V,50MA		FD7003
CR307	152-0153-00		SEMICOND DEVICE:SILICON, 15V, 50MA		FD7003
CR308	152-0153-00		SEMICOND DEVICE: SILICON, 15V, 50MA	13715	FD7003
CR314	152-0153-00		SEMICOND DEVICE:SILICON, 15V, 50MA	13715	FD7003
	150 0150 00		GUITGOUR REVIEW GITTON LEVE FOUR	10715	mp7003
CR315	152-0153-00		SEMICOND DEVICE:SILICON,15V,50MA SEMICOND DEVICE:SILICON,15V,50MA		FD7003 FD7003
CR317 CR318	152-0153-00 152-0153-00		SEMICOND DEVICE:SILICON,15V,50MA SEMICOND DEVICE:SILICON,15V,50MA		FD7003
CR342	152-0133-00		SEMICOND DEVICE:SILICON, 130, 30MA	07910	1N4152
CR362	152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA	07910	1N4152
CR368	152-0141-02		SEMICOND DEVICE: SILICON, 30V, 150MA	07910	1N4152
CR372	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	07910	lN4152
CR378	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	07910	= : ::
CR421	152-0269-00		SEMICOND DEVICE:SILICON, VAR VCAP., 4V, 33PF	25403	
CR422	152-0269-00		SEMICOND DEVICE: SILICON, VAR VCAP., 4V, 33PF	25403	1N3182
CR517	152-0246-00		SEMICOND DEVICE:SILICON,400PIV,200MA	07910	CD12676
CR550	152-0125-00	B250000 B256799	SEMICOND DEVICE:TUNNEL,15PF,4.7MA	03508	STD704
CR550	152-0125-01	B256800	SEMICOND DEVICE: TUNNEL, 15PF, 4.7MA		
CR552	152-0125-00	B256800 B256799	SEMICOND DEVICE: TUNNEL, 15PF, 4.7MA	03508	STD704
CR552	152-0125-01	B250000	SEMICOND DEVICE: TUNNEL15PF, 4.7MA		
CR553	152-0141-02		SEMICOND DEVICE: SILICON, 30V, 150MA	07910	1N4152
	350 0141 00		GRATGONE BENTOE GET TOOK 2011 15045	07010	1,4150
CR554	152-0141-02 152-0246-00		SEMICOND DEVICE:SILICON,30V,150MA SEMICOND DEVICE:SILICON,400PIV,200MA	07910 079 1 0	1N4152 CD12676
CR617 CR650	152-0248-00	B250000 B256799	SEMICOND DEVICE:SILICON, 400PIV, 200MA SEMICOND DEVICE:TUNNEL, 15PF, 4.7MA	03508	STD704
CR650	152-0125-01	B256800	SEMICOND DEVICE: TUNNEL, 15PF, 4.7MA	0,3500	515,04
CR652	152-0125-00	B250000 B257699	SEMICOND DEVICE: TUNNEL, 15PF, 4.7MA	03508	STD704
CR652	152-0125-01	B256800	SEMICOND DEVICE: TUNNEL, 15PF, 4.7MA		
CR801	152-0322-00		SEMICOND DEVICE:SILICON,15V	28480	
CR809	152-0141-02 152-0141-02		SEMICOND DEVICE: SILICON, 30V, 150MA	07910 07910	1N4152
CR818 CR822	152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA SEMICOND DEVICE:SILICON,30V,150MA	07910	
CR825	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	07910	1N4152
01.000	202 0212 02				
CR826	152-0141-02		SEMICOND DEVICE: SILICON, 30V, 150MA	07910	1N4152
CR831	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	07910	1N4152
CR832	152-0141-02		SEMICOND DEVICE: SILICON, 30V, 150MA	07910	1N4152
CR838	152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA	07910	1N4152
CR851	152-0322-00		SEMICOND DEVICE:SILICON,15V	28480	5082-2672
CR859	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	07910	1N4152
CR862	152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA	07910	
CR863	152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA	07910	1N4152
CR877	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	07910	lN4152
CR1001	152-0141-02		SEMICOND DEVICE: SILICON, 30V, 150MA	07910	lN4152
	150 ct to		CONTROL DESIGN	0001	124150
CR1004	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	07910	1N4152
CR1011 CR1024	152-0141-02 152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA SEMICOND DEVICE:SILICON,30V,150MA	07910 07910	
CR1024	152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA SEMICOND DEVICE:SILICON,30V,150MA	07910	
CR1033	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	07910	1N4152
			• ,		

7-9

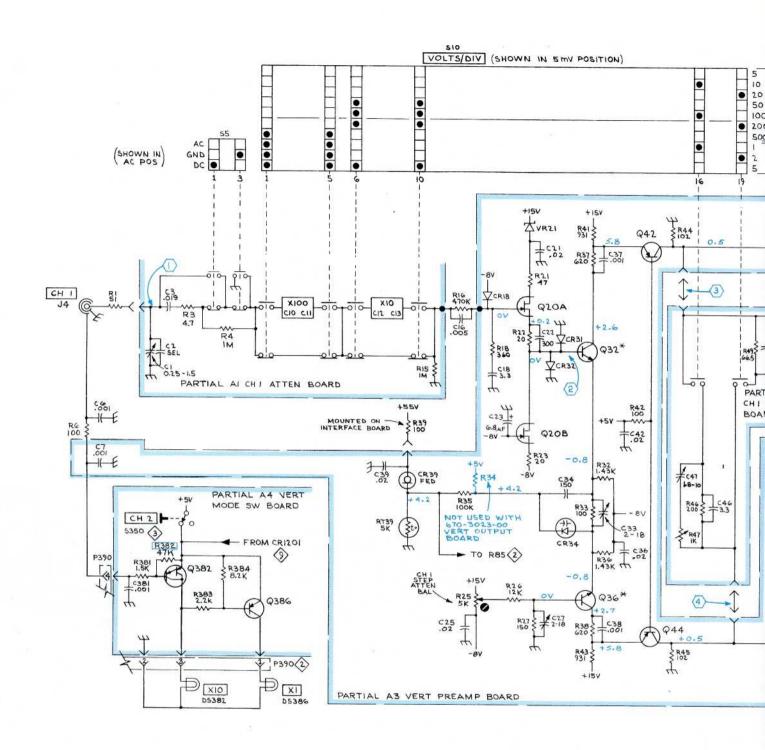

^{*}See parts list for serial number ranges.


Fig. 8-2. A1 & A2-Attenuators and A

GR	CKT	GRID	CKT	GRID	CKT	GRID	CKT	GRID	CKT
LO	NO	LOC	NO	LOC	NO	LOC	NO	LOC	NO
4A	Q164	8B	L122	4B	C164	11B	C47	13C	C1
2A	Q168	6C	L149	4A	C165	10B	C48	13C	C2
5B	Q304			20		10B	C49	13B	C3
6C	Q308	11C	Q20A	11C	CR18	9B	C101	13C	C6
		11C	Q20B	10D	CR31	9A	C102	13C	C7
13	R1	10C	Q32	10D	CR32	8B	C105	11C	C18
13	R3 .	10C	Q36	10C	CR34	9A	C107	11C	C21
13	R4	9B	Q42	8C	CR39	9B	C109	11C	C22
13	R6	9B	Q44	4B	CR152	7B	C122	12C	C23
11	R15	9B	Q102	4A	CR164	8B	C124	12C	C25
11	R18	9B	Q104	5A	CR165	7A	C125	11D	C27
11	R21	7B	Q122	5A	CR166	6B	C135	10C	C33
10	R22	7B	Q124	5A	CR167	6B	C137	10C	C34
11	R23	7B	Q132	50,000		6A	C142	10C	C36
12	R25	7B	Q134	14C	J4	5A	C144	9C	C37
11	R26	6A	Q142	2B	J162	6C	C149	9C	C38
11	R27	6B	Q148	2A	J164	5B	C151	8C	C39
10	R32	5B	Q152	1A	J168	3A	C161	8C	C42
10	R33	4A	Q162			3B	C162	11B	C46
90	R34 ¹	_	THE						

[†]Located on back of board.

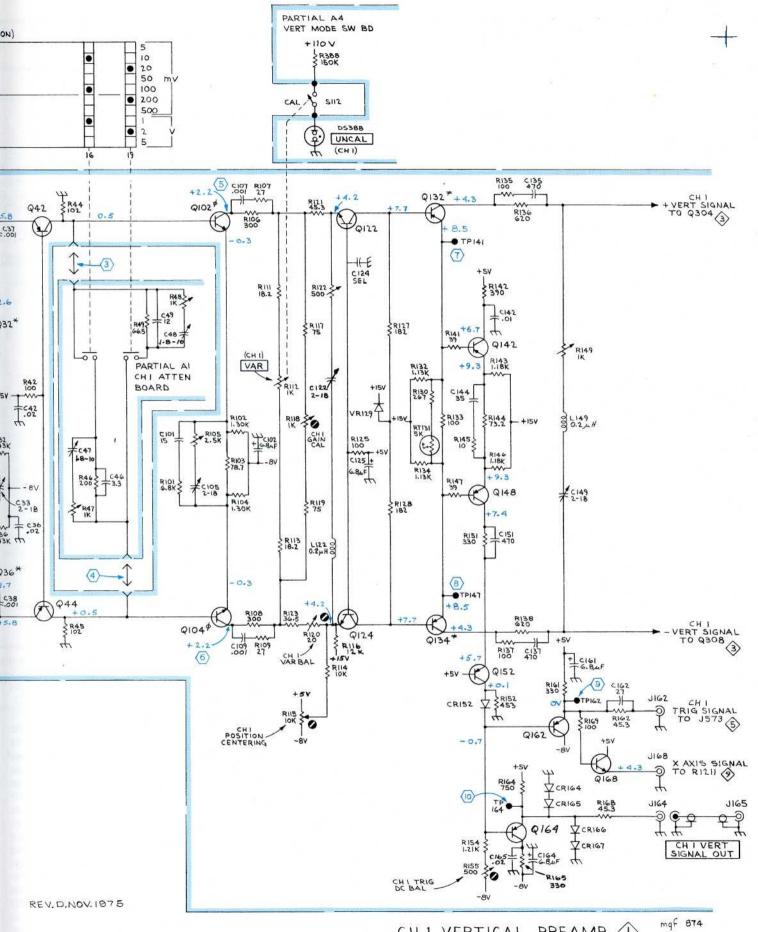
¹Not used with 670-3023 Vertical Output Board.



CKT	GRID	CKT	GRID
NO	LOC	NO	LOC
C381	5A	R381	6A
C391	5A	R383	6A
		R384	6A
DS388	6B	R388	2A
DS389	6D	R389	2E
P390	5A	R391	5A
Q382	6A	R393	4A
Q386	7A	R394	4A
Q392	4A		
Q396	3A	S350	1C

A4 VERT MODE RCUIT BOARD

REV. A, JAN. 1975


NOTE: *, ¢, ≠ THERMAL COUPLED

SEE PARTS LIST FOR EARLIER VALUES AND SERIAL NUMBER RANGES OF PARTS MARKED WITH BLUE OUTLINE.

SEE PARTS LIST FOR SEMICONDUCTOR TYPES.

-

REV. D. NOV. 1975

CHI VERTICAL PREAMP

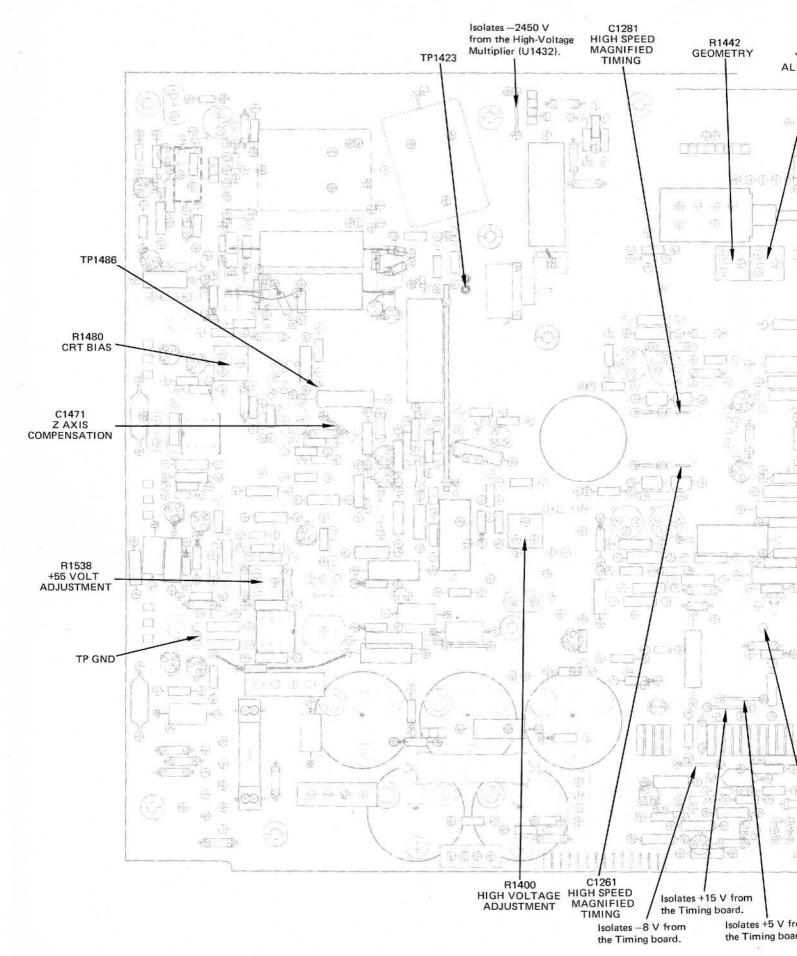
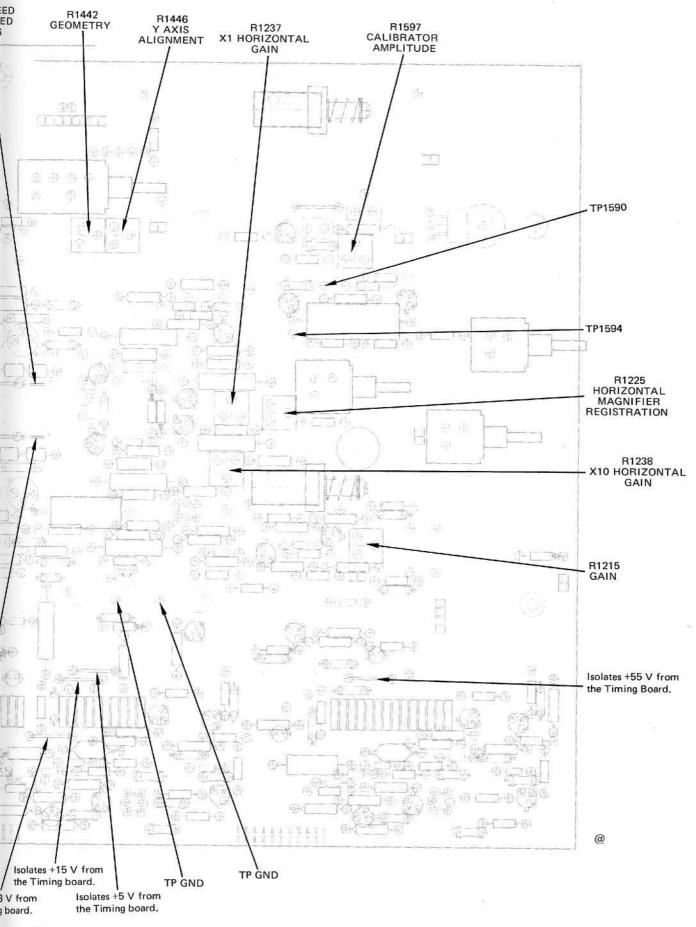
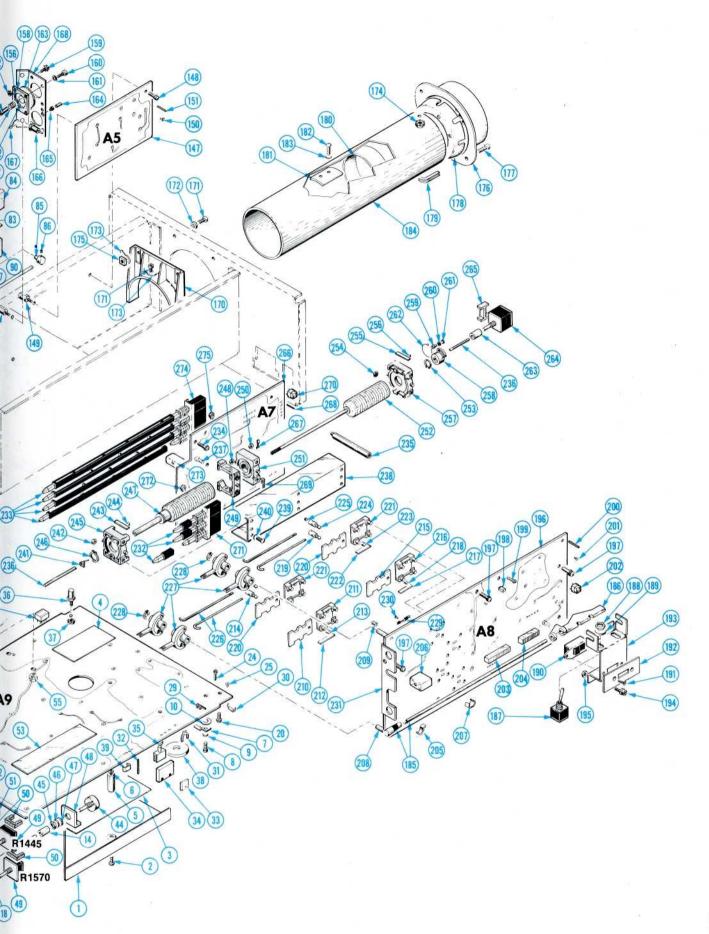




Fig. 8-19. Interface circuit board adjustment locat

TABLE OF CONTENTS

BEFORE OPERATING	Page	BASIC OSCILLOSCOPE DISPLAYS (cont)	Page
INTRODUCTION	1	DELAYED SWEEP DISPLAY	17
SAFETY INFORMATION	1	MIXED SWEEP DISPLAY	18
OPERATING VOLTAGE	2	X-Y DISPLAY	18
OPTIONS	3	SINGLE SWEEP DISPLAY	19
CONTROLS, CONNECTORS AND INDICATORS	3	DM43/DM40 DISPLAYS AND MEASUREMENTS	
VERTICAL	4	RESISTANCE	20
DISPLAY	6	VOLTS	22
DM43/DM40	6	TEMPERATURE (DM43 ONLY)	24
TRIGGER	8	APPLICATIONS AND MEASUREMENTS	
HORIZONTAL, CALIBRATOR, AND POWER	12	PRELIMINARY	28
REAR PANEL	14	OPERATOR'S ADJUSTMENTS AND CHECKS	29
SIDE PANEL	15	PEAK-TO-PEAK VOLTAGE MEASUREMENTS —AC	31
BASIC OSCILLOSCOPE DISPLAYS		INSTANTANEOUS VOLTAGE	
NORMAL SWEEP DISPLAY	16	MEASUREMENTS —DC	32
MAGNIFIED SWEEP DISPLAY	17	ALGEBRAIC ADDITION	34
REV. B, SEPT 1974 465 ar	nd DM 43/	DM40 Operators	i

TABLE OF CONTENTS

BEFORE OPERATING	Page	BASIC OSCILLOSCOPE DISPLAYS (cont)	Page
INTRODUCTION	1	DELAYED SWEEP DISPLAY	17
SAFETY INFORMATION	1	MIXED SWEEP DISPLAY	18
OPERATING VOLTAGE	2	X-Y DISPLAY	18
OPTIONS	3	SINGLE SWEEP DISPLAY	19
CONTROLS, CONNECTORS AND IN	IDICATORS	DM43/DM40 DISPLAYS AND MEASUREMENTS	
VERTICAL	4	RESISTANCE	20
DISPLAY	6	VOLTS	22
DM43/DM40	6	TEMPERATURE (DM43 ONLY)	24
TRIGGER	8	APPLICATIONS AND MEASUREMENTS	
HORIZONTAL, CALIBRATOR, AN	D POWER 12	PRELIMINARY	28
REAR PANEL	14	OPERATOR'S ADJUSTMENTS AND CHECKS	29
SIDE PANEL	15	PEAK-TO-PEAK VOLTAGE	
54616 666W 666655 5165W AVE		MEASUREMENTS —AC	31
BASIC OSCILLOSCOPE DISPLAYS		INSTANTANEOUS VOLTAGE	
NORMAL SWEEP DISPLAY	16	MEASUREMENTS —DC	32
MAGNIFIED SWEEP DISPLAY	17	ALGEBRAIC ADDITION	34

APPLICATIONS AND MEASUREMENTS (cont)	Page	APPLICATIONS AND MEASUREMENTS (cont)	Page
COMMON-MODE REJECTION	35	DM43/DM40 DELAYED OR MIXED	
AMPLITUDE COMPARISON MEASUREMENTS	36	SWEEP TIME MEASUREMENTS	48
TIME DURATION MEASUREMENTS	37	Time Difference Between Repetitive Pulses (DM43/DM40)	48
FREQUENCY MEASUREMENTS	38	Time Duration (DM43/DM40)	49
RISETIME MEASUREMENTS	39	Frequency (DM43/DM40)	50
TIME-DIFFERENCE BETWEEN TWO PULSES FROM DIFFERENT SOURCES	40	Time Difference Between Two Pulses From Different Sources (DM43/DM40)	51
TIME COMPARISON MEASUREMENTS	41	Risetime (DM43/DM40)	52
BASIC 465 DELAYED OR MIXED SWEEP TIME MEASUREMENTS	42	Mix (DM43/DM40)	53
Time Difference Between Repetitive		DELAYED OR MIXED SWEEP MAGNIFICATION	53
Pulses (Basic 465)	42	Magnified Sweep Starts After Delay	53
Time Duration Measurements (Basic 465)	43	Triggered Delayed Sweep Magnification	55
Frequency (Basic 465)	44	PHASE DIFFERENCE MEASUREMENTS	56
Time Difference Between Two Pulses From Different Sources (Basic 465) Risetime (Basic 465)	45 47	HIGH RESOLUTION PHASE DIFFERENCE MEASUREMENTS	57
Mix (Basic 465)	48	PULSE JITTER MEASUREMENTS	58
		=	

465 and DM43/DM40 Operators

REV. B, SEPT 1974

TABLE OF CONTENTS (cont)

APPLICATIONS AND MEASUREMENTS (cont)	Page	APPLICATIONS AND MEASUREMENTS (cont)	Page
COMMON-MODE REJECTION	35	DM43/DM40 DELAYED OR MIXED	
AMPLITUDE COMPARISON MEASUREMENTS	36	SWEEP TIME MEASUREMENTS	48
TIME DURATION MEASUREMENTS	37	Time Difference Between Repetitive Pulses (DM43/DM40)	48
FREQUENCY MEASUREMENTS	38	Time Duration (DM43/DM40)	49
RISETIME MEASUREMENTS	39	Frequency (DM43/DM40)	50
TIME-DIFFERENCE BETWEEN TWO PULSES FROM DIFFERENT SOURCES	40	Time Difference Between Two Pulses From Different Sources (DM43/DM40)	51
TIME COMPARISON MEASUREMENTS	41	Risetime (DM43/DM40)	52
BASIC 475 DELAYED OR MIXED SWEEP TIME MEASUREMENTS	42	Mix (DM43/DM40)	53
Time Difference Between Repetitive		DELAYED OR MIXED SWEEP MAGNIFICATION	53
Pulses (Basic 475)	42	Magnified Sweep Starts After Delay	53
Time Duration Measurements (Basic 475)	43	Triggered Delayed Sweep Magnification	55
Frequency (Basic 475) Time Difference Between Two Pulses From	44.	PHASE DIFFERENCE MEASUREMENTS	56
Different Sources (Basic 475)	45	HIGH RESOLUTION PHASE	
Risetime (Basic 475)	47	DIFFERENCE MEASUREMENTS	57
Mix (Basic 475)	48	PULSE JITTER MEASUREMENTS	58

ii

OPERATOR'S SPECIFICATIONS	Page	OPERATOR'S SPECIFICATIONS (cont)	Page
VERTICAL	59	TEMPERATURE—DM43 ONLY, WITH PROBE	63
TRIGGERING	60	DC VOLTAGE DM43/DM40	63
DIFFERENTIAL TIME		AC POWER SOURCE	64
MEASUREMENT (BASIC 465)	60	ENVIRONMENTAL	64
DIFFERENTIAL TIME MEASUREMENT (DM43/DM40)	61	ACCESSORIES	
HORIZONTAL	61	STANDARD ACCESSORIES INCLUDED	65
CALIBRATOR	61	OPTIONAL ACCESSORIES	65
Z-AXIS INPUT	62		
OUTPUTS	62	OPTIONS	
RESISTANCE DM43/DM40	62	OPTION 4	66
TIME DM43/DM40	62	OPTION 7	66

REV. B, SEPT 1974

465 and DM43/DM40 Operators

i

TABLE OF CONTENTS (cont)

OPERATOR'S SPECIFICATIONS	Page	OPERATOR'S SPECIFICATIONS (cont)	Page
VERTICAL	59	TEMPERATURE—DM43 ONLY, WITH PROBE	63
TRIGGERING	60	DC VOLTAGE DM43/DM40	63
DIFFERENTIAL TIME		AC POWER SOURCE	64
MEASUREMENT (BASIC 475)	60	ENVIRONMENTAL	64
DIFFERENTIAL TIME MEASUREMENT (DM43/DM40)	61	ACCESSORIES	
HORIZONTAL	61	STANDARD ACCESSORIES INCLUDED	65
CALIBRATOR	61	OPTIONAL ACCESSORIES	65
Z-AXIS INPUT	62		
OUTPUTS	62	OPTIONS	
RESISTANCE DM43/DM40	62	OPTION 4	66
TIME DM43/DM40	62	OPTION 7	66

Basic 465 Oscilloscope.

465 Oscilloscope with DM 43 digital multimeter.

465 and DM43/DM40 Operators

REV. B, SEPT 1974

475 Oscilloscope with DM 43 digital multimeter.

BEFORE OPERATING

INTRODUCTION

The Tektronix 465 Oscilloscope is a dual-channel, portable instrument. The dual-channel dc-to-100 MHz vertical system provides calibrated deflection factors from 5 millivolts to 5 volts/division. The sweep trigger circuits are capable of stable triggering over the full bandwidth capabilities of the vertical deflection system. The horizontal deflection system provides calibrated sweep rates from 0.5 second to 0.05 microsecond/division along with delayed sweep features for accurate relative-time measurements. A X10 magnifier extends the calibrated sweep rate to 5 nanoseconds/division. The instrument operates over a wide variation of line voltages and frequencies. Maximum power consumption is about 100 watts.

The Tektronix DM43 Digital Mulitmeter measures 0 ohms to 20 megohms, 0 dc volts to 1200 dc volts (+ or -) or -55°C to $+150^{\circ}\text{C}$ and displays the measurement on a digital display while the oscilloscope operates normally.

The digital multimeter and oscilloscope combine to provide a digital readout of the time between any two points on the oscilloscope display. The DM40 is identical to the DM43, except that the DM40 lacks temperature measurement capability.

SAFETY INFORMATION

The instrument is designed to operate from a single-phase power source with one of the current-carrying conductors (the Neutral Conductor) at ground (earth) potential. Operation from power sources where both current-carrying conductors are live with respect to ground (such as phase-to-phase on a three-wire system) is not recommended, since only the Line Conductor has over-current (fuse) protection within the instrument.

The instrument has a three-wire power cord with a three-terminal polarized plug for connection to the power source and safety-earth. The ground (earth) terminal of the plug is directly connected to the instrument frame. For electric-shock protection, insert this plug only in a mating outlet with a safety-earth contact.

REV. B, SEPT 1974

465 and DM43/DM40 Operators

1

BEFORE OPERATING

INTRODUCTION

The Tektronix 475 Oscilloscope is a dual-channel, portable instrument. The dual-channel dc-to-200 MHz vertical system provides calibrated deflection factors from 2 millivolts to 5 volts/division. The sweep trigger circuits are capable of stable triggering over the full bandwidth capabilities of the vertical deflection system. The horizontal deflection system provides calibrated sweep rates from 0.5 second to 0.01 microsecond/division along with delayed sweep features for accurate relative-time measurements. A X10 magnifier extends the calibrated sweep rate to 1 nanosecond/division. The instrument operates over a wide variation of line voltages and frequencies. Maximum power consumption is about 100 watts.

The Tektronix DM43 Digital Mulitmeter measures 0 ohms to 20 megohms, 0 dc volts to 1200 dc volts (+ or -) or -55°C to $+150^{\circ}\text{C}$ and displays the measurement on a digital display while the oscilloscope operates normally.

The digital multimeter and oscilloscope combine to provide a digital readout of the time between any two points on the oscilloscope display.

The DM40 is identical to the DM43, except that the DM40 lacks temperature measurement capability.

SAFETY INFORMATION

The instrument is designed to operate from a singlephase power source with one of the current-carrying conductors (the Neutral Conductor) at ground (earth) potential. Operation from power sources where both current-carrying conductors are live with respect to ground (such as phase-to-phase on a three-wire system) is not recommended, since only the Line Conductor has over-current (fuse) protection within the instrument.

The instrument has a three-wire power cord with a three-terminal polarized plug for connection to the power source and safety-earth. The ground (earth) terminal of the plug is directly connected to the instrument frame. For electric-shock protection, insert this plug only in a mating outlet with a safety-earth contact.

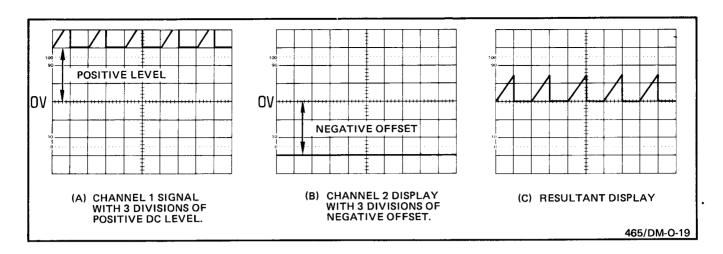


Fig. 16. Algebraic addition.

COMMON-MODE REJECTION

The ADD mode can be used to display signals that contain undesirable components. These undesirable components can be eliminated through common mode rejection. The precautions given under algebraic addition should be observed.

EXAMPLE: The signal applied to the CH 1 input contains unwanted line frequency components (see Fig. 17A.). To remove the undesired components use the following procedure.

- 1. Connect a line frequency signal to the CH 2 input.
- 2. Set the VERT MODE switch to ALT and the CH 2 INVERT switch to on (button in). Adjust the CH 2

REV. B, SEPT 1974

465 and DM43/DM40 Operators

35

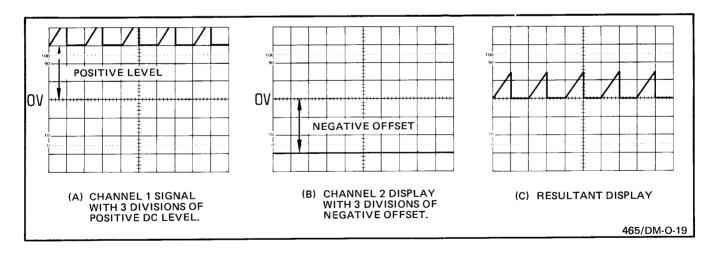


Fig. 16. Algebraic addition.

COMMON-MODE REJECTION

The ADD mode can be used to display signals that contain undesirable components. These undesirable components can be eliminated through common mode rejection. The precautions given under algebraic addition should be observed.

EXAMPLE: The signal applied to the CH 1 input contains unwanted line frequency components (see Fig. 17A.). To remove the undesired components use the following procedure.

- 1. Connect a line frequency signal to the CH 2 input.
- 2. Set the VERT MODE switch to ALT and the CH 2 INVERT switch to on (button in). Adjust the CH 2

35

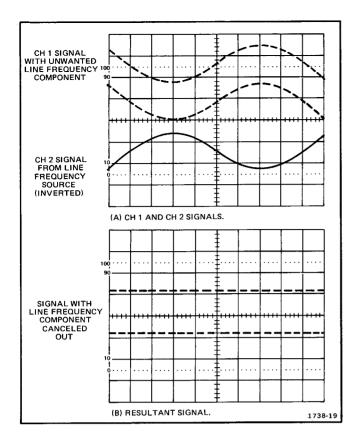


Fig. 17. Common-mode rejection.

VOLTS/DIV and VAR VOLTS/DIV controls so the CH 2 display is about the same amplitude as the undesired portion of the CH 1 display (see Fig. 17A).

3. Set the VERT MODE switch to ADD. Slightly readjust the CH 2 VAR VOLTS/DIV control for maximum cancellation of the undesired signal component (see Fig. 17B).

AMPLITUDE COMPARISON MEASUREMENTS

If comparisons of an unknown signal with a reference signal are repetitious (e.g., on an assembly line test) it is possible to obtain more accurate easily read measurements if the VAR VOLTS/DIV control is adjusted to set the reference signal to an exact number of divisions. The unknown signal can then be quickly and easily compared with or adjusted to an exact number of divisions.

Other unknown signals may be measured without disturbing the setting of the VAR VOLTS/DIV control by establishing a vertical conversion factor and an arbitrary deflection factor. The amplitude of the reference signal must be known before a vertical conversion factor can be established.

465 and DM43/DM40 Operators

REV. B, SEPT 1974

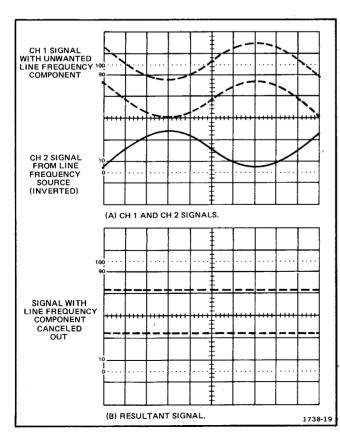


Fig. 17. Common-mode rejection.

VOLTS/DIV and VAR VOLTS/DIV controls so the CH 2 display is about the same amplitude as the undesired portion of the CH 1 display (see Fig. 17A).

3. Set the VERT MODE switch to ADD. Slightly readjust the CH 2 VAR VOLTS/DIV control for maximum cancellation of the undesired signal component (see Fig. 17B).

AMPLITUDE COMPARISON MEASUREMENTS

If comparisons of an unknown signal with a reference signal are repetitious (e.g., on an assembly line test) it is possible to obtain more accurate easily read measurements if the VAR VOLTS/DIV control is adjusted to set the reference signal to an exact number of divisions. The unknown signal can then be quickly and easily compared with or adjusted to an exact number of divisions.

Other unknown signals may be measured without disturbing the setting of the VAR VOLTS/DIV control by establishing a vertical conversion factor and an arbitrary deflection factor. The amplitude of the reference signal must be known before a vertical conversion factor can be established.

475 and DM43/DM40 Operators

REV. B, SEPT 1974

36

EXAMPLE: The apparent magnification of a display with an A TIME/DIV switch setting of .1 ms and a B TIME/DIV switch setting of 1 μ s is:

Apparent
Magnification (Delayed Sweep)

A TIME/DIV setting B TIME/DIV setting

Substituting the given values:

Apparent Magnification = $\frac{1 \times 10^{-4}}{1 \times 10^{-6}}$

The apparent magnification is 100 times.

Triggered Delayed Sweep Magnification

The delayed sweep magnification method just described may produce too much jitter at high apparent magnification ranges. Operating the B Sweep in a triggered mode provides a more stable display since the delayed display is triggered at the same point each time.

1. Set up the display as given in steps 1 through 6 under "Magnified Sweep Starts After Delay".

- 2. Set the B Trigger SOURCE switch to the same position as the A Trigger SOURCE switch.
- 3. Adjust the B LEVEL control so the intensified zone on the trace is stable. (If an intensified zone cannot be obtained, see step 4.)
- 4. Inability to intensify the desired portion indicates that the signal does not meet the triggering requirements. If the condition cannot be remedied with the B Triggering controls or by increasing the display amplitude (lower VOLTS/DIV setting), trigger B Sweep externally.
- 5. When the correct portion is intensified, set the HORIZ DISPLAY switch to B DLY'D. Slight readjustment of the B LEVEL control may be necessary for a stable display.
- Measurements are made and magnification factors are calculated as in the STARTS AFTER DELAY mode previously given.

@

465 and DM43/DM40 Operators

55

EXAMPLE: The apparent magnification of a display with an A TIME/DIV switch setting of .1 ms and a B TIME/DIV switch setting of 1 μ s is:

Apparent
Magnification
(Delayed B TIME/DIV setting
Sweep)

Substituting the given values:

Apparent = $\frac{1 \times 10^{-4}}{1 \times 10^{-6}}$

The apparent magnification is 100 times.

Triggered Delayed Sweep Magnification

The delayed sweep magnification method just described may produce too much jitter at high apparent magnification ranges. Operating the B Sweep in a triggered mode provides a more stable display since the delayed display is triggered at the same point each time.

1. Set up the display as given in steps 1 through 6 under "Magnified Sweep Starts After Delay".

- 2. Set the B Trigger SOURCE switch to the same position as the A Trigger SOURCE switch.
- 3. Adjust the B LEVEL control so the intensified zone on the trace is stable. (If an intensified zone cannot be obtained, see step 4.)
- 4. Inability to intensify the desired portion indicates that the signal does not meet the triggering requirements. If the condition cannot be remedied with the B Triggering controls or by increasing the display amplitude (lower VOLTS/DIV setting), trigger B Sweep externally.
- 5. When the correct portion is intensified, set the HORIZ DISPLAY switch to B DLY'D. Slight readjustment of the B LEVEL control may be necessary for a stable display.
- 6. Measurements are made and magnification factors are calculated as in the STARTS AFTER DELAY mode previously given.

PHASE DIFFERENCE MEASUREMENTS

Use either the CHOP or ALT mode. Set the A Trigger SOURCE switch to CH 1. The reference signal should precede the comparison signal in time. Use coaxial cables or probes that have equal time delay to connect the signals to the input connectors.

If the signals are of opposite polarity, set the INVERT pushbutton to invert the Channel 2 display (signals may be of opposite polarity due to 180° phase difference; if so, take this into account in the final calculation). Set the CH1 and CH2 VOLTS/DIV switches and the CH1 and CH2 VAR controls so the displays are equal in amplitude.

Set the TIME/DIV switch for about a one-cycle waveform. Position the display and turn the A VAR TIME/DIV control for 1 reference signal cycle in exactly eight divisions (see Fig. 30). Each division of the graticule represents 45° of the cycle ($360^{\circ} \div 8$ divisions = 45° /division). The sweep rate can be stated in terms of degrees as 45° /division.

Measure the horizontal difference between corresponding points on the waveforms and multiply the distance measured (in divisions) by 45°/division (sweep rate) to obtain the amount of phase difference.

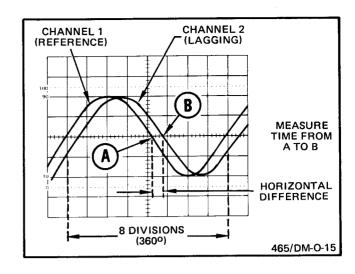


Fig. 30. Phase difference.

EXAMPLE: The horizontal difference is 0.6 division with a sweep rate of 45°/division as shown in Fig. 30.

Using the formula:

Phase Difference = horizontal difference divisions | X | sweep (degrees/div)

56

465 and DM43/DM40 Operators

@

PHASE DIFFERENCE MEASUREMENTS

Use either the CHOP or ALT mode. Set the A Trigger SOURCE switch to CH 1. The reference signal should precede the comparison signal in time. Use coaxial cables or probes that have equal time delay to connect the signals to the input connectors.

If the signals are of opposite polarity, set the INVERT pushbutton to invert the Channel 2 display (signals may be of opposite polarity due to 180° phase difference; if so, take this into account in the final calculation). Set the CH 1 and CH 2 VOLTS/DIV switches and the CH 1 and CH 2 VAR controls so the displays are equal in amplitude.

Set the TIME/DIV switch for about a one-cycle waveform. Position the display and turn the A VAR TIME/DIV control for 1 reference signal cycle in exactly eight divisions (see Fig. 30). Each division of the graticule represents 45° of the cycle ($360^{\circ} \div 8$ divisions = 45° /division). The sweep rate can be stated in terms of degrees as 45° /division.

Measure the horizontal difference between corresponding points on the waveforms and multiply the distance measured (in divisions) by 45°/division (sweep rate) to obtain the amount of phase difference.

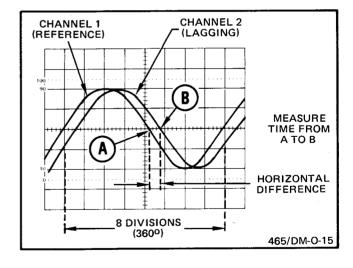


Fig. 30. Phase difference.

EXAMPLE: The horizontal difference is 0.6 division with a sweep rate of 45°/division as shown in Fig. 30.

Using the formula:

Phase bifference | horizontal difference | X | sweep | X (degrees/div)

Substituting the given values:

Phase Difference = $0.6 \times 45^{\circ} = 27^{\circ}$.

HIGH RESOLUTION PHASE DIFFERENCE MEASUREMENTS

Make more accurate phase measurements by increasing the sweep rate (without changing the A VAR TIME/DIV control) by using the X10 MAG mode. Delayed sweep magnification may also be used (see Fig. 31).

EXAMPLE: If the sweep rate were increased 10 times with the magnifier, the magnified sweep rate would be 45° \div 10 = 4.5° /division. Fig. 31 shows the same signals as used in Fig. 30 but with the X10 MAG switch set to X10. With a horizontal difference of 6 divisions, the phase difference is:

Phase Difference = horizontal magnified difference X sweep rate (divisions) (degrees/div)

Substituting the given values:

Phase Difference = $6 \times 4.5^{\circ} = 27^{\circ}$.

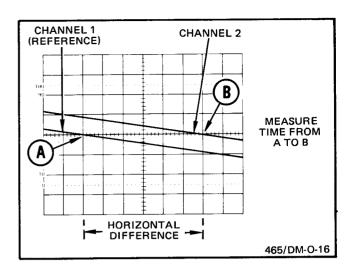


Fig. 31. High resolution phase difference.

@

465 and DM43/DM40 Operators

57

Substituting the given values:

Phase Difference = $0.6 \times 45^{\circ} = 27^{\circ}$.

HIGH RESOLUTION PHASE DIFFERENCE MEASUREMENTS

Make more accurate phase measurements by increasing the sweep rate (without changing the A VAR TIME/DIV control) by using the X10 MAG mode. Delayed sweep magnification may also be used (see Fig. 31).

EXAMPLE: If the sweep rate were increased 10 times with the magnifier, the magnified sweep rate would be 45° \div $10 = 4.5^{\circ}$ /division. Fig. 31 shows the same signals as used in Fig. 30 but with the X10 MAG switch set to X10. With a horizontal difference of 6 divisions, the phase difference is:

Phase Difference = horizontal magnified difference X sweep rate (divisions) (degrees/div)

Substituting the given values:

Phase Difference = $6 \times 4.5^{\circ} = 27^{\circ}$.

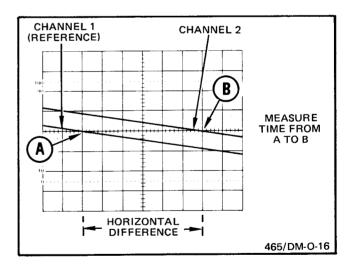


Fig. 31. High resolution phase difference.

PULSE JITTER MEASUREMENTS

Be sure the VAR TIME/DIV switch is in the calibrated detent. Set the B TIME/DIV switch to intensify the full rising portion of the pulse. Set the HORIZ DISPLAY switch to B DLY'D.

Pulse jitter is shown by horizontal movement of the pulse and includes the inherent jitter of the Delayed Sweep (see Fig. 32). Multiply the distance by the B TIME/DIV switch setting to obtain pulse jitter time.

Fig. 32. Pulse jitter.

58

465 and DM43/DM40 Operators

@

PULSE JITTER MEASUREMENTS

Be sure the VAR TIME/DIV switch is in the calibrated detent. Set the B TIME/DIV switch to intensify the full rising portion of the pulse. Set the HORIZ DISPLAY switch to B DLY'D.

Pulse jitter is shown by horizontal movement of the pulse and includes the inherent jitter of the Delayed Sweep (see Fig. 32). Multiply the distance by the B TIME/DIV switch setting to obtain pulse jitter time.

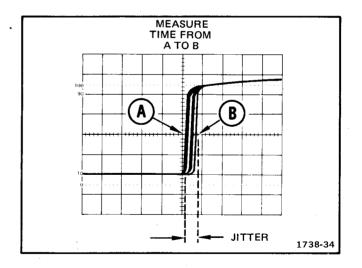


Fig. 32. Pulse jitter.